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Abstract

We present ShapeFormer, a pure transformer based archi-
tecture that efficiently predicts missing regions from partially
complete input point clouds. Prior work for point cloud
completion still produce samples of inferior visual qual-
ity, specifically near smooth regions, sharp corners, thin
lines, etc. To solve these problems, we carefully design
the encoder and decoder of ShapeFormer to - (1) encode
the partial input point cloud using memory efficient Local
Context Transformer, (2) predict missing regions from the
overall shape representation using Folding Blocks, (3) guide
the completion procedure using geometric cues present in
the input partial shape using Skip Context Transformer, (4)
and finally group points based on their semantic similarity
into regions using the learnable Region Grouping layers.
Our experiments demonstrate that ShapeFormer can accu-
rately predict complete point clouds of high visual quality,
and can achieve competitive results in the Completion3D
benchmark and even outperform state-of-the-art methods
in the Multi-View Partial Point Cloud benchmark (↓ 10%
CD). We introduce Completion3D-C, a benchmark to eval-
uate robustness of various point cloud completion methods
and ShapeFormer achieves best performance across vari-
ous unseen transformations (↓ 14% CD on average). We
also show that our method generalizes well to out-of-domain
samples belonging to both seen and unseen categories. All
results bring us one step closer to using transformers as
a “universal modelling tool" for point clouds. Code will be
made available after acceptance.
1. Introduction

Recent improvements in deep learning techniques along
with abundant access to point cloud data [29, 5] has enabled
great progress in 3D computer vision [17, 19]. However,
raw point clouds captured by 3D scanners or depth cam-
eras are often incomplete due to occlusions, light reflection,
limited sensor resolution, etc [34]. Therefore, recovering
complete point clouds from partial scans is a very impor-
tant task. Point clouds are unstructured, unordered and a
majority of the early methods transform 3D data to regular
representations like images [21] and voxels [18]. However,

these methods are limited by the number of views/resolution
of voxels and require large amount of storage, compute.
With the advent of PointNet [17], deep learning architec-
tures are capable of directly operating on 3D coordinates
and this has been extended for the point cloud completion
task [34, 23]. The task of point cloud completion requires
- 1. retention of the geometric properties present in the in-
put partial point cloud, 2. predict missing portions based
on the given input. Existing work derive a global shape
representation which is then used to estimate the missing re-
gions [34, 23]. However, the pooling operation leads to loss
of information which cannot be recovered in the decoding
stage. Follow-up works [14, 26, 15, 31] improve completion
results by preserving geometric details using local features
extracted from the input point cloud. However, they still
tend to “average” unique shapes within a class and produce
a common structure that can minimize loss against all the
samples. More recent methods like - [12] predict the missing
part of the point cloud instead of the whole object, [32, 16]
use probabilistic modelling to learn partial-to-complete map-
ping and [30, 25] utilize transformers for better decoding
quality. However, the completed point clouds still lack im-
portant geometric details especially around thin lines, sharp
corners, etc (see Fig. 3). Another important challenge in
point cloud completion is comparison with the ground truth.
Existing similarity metrics include Chamfer Distance (CD),
and Earth-Mover’s Distance (EMD), each with their own ad-
vantages and disadvantages. CD is computationally efficient
but fails to penalize regions with different density distribu-
tion as the ground truth point cloud while EMD is of O(N2)
complexity and cannot be applied to dense point clouds due
to memory bottleneck. Therefore, there is a strong require-
ment to introduce robust yet efficient metrics to evaluate the
quality of point cloud completion.

Transformers have achieved great results across various
tasks and domains [24, 9]. Attention in its core is a set
operator - implying that it is invariant to permutation and car-
dinality of the input elements, which makes it ideal for point
cloud representation. Recent works utilizing transformers
for 3D vision have showcased great performance in classi-
fication and segmentation tasks [20, 35, 11] while there is
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very little work for shape completion. To this end, we pro-
pose ShapeFormer - a fully-attention encoder decoder model
for point cloud shape completion. The encoder contains
multiple Local Context Aggregation Transformers, followed
by Fully Connected (FC) layers to generate a coarse com-
plete point cloud. The coarse shape is then up-sampled to
higher resolutions in multiple stages by - preserving geomet-
ric details of the partial shape via Skip Context Aggregation
Transformers, predicting missing regions from the overall
shape vector and refining the generated point cloud by encod-
ing region-wise representations of semantically similar parts.
Our method performs competitively with existing methods
on the Completion3D [23] and even outperforms them on
the Multi-View Partial Point Cloud [16] datasets. Next, we
establish a detailed test bench - Completion3D-C (C stands
for Corrupted) for robustness analysis of point cloud shape
completion networks to various (unseen) synthetic, domain
shifts. We further evaluate our method’s generalization ca-
pacity to out-of-domain samples from both seen and unseen
categories. Our key contributions can be summarized as
follows:

1. We propose a pure transformer network - ShapeFormer
that achieves more expressive and universal point cloud
representation to accurately complete missing regions
in partial point clouds with high visual quality.

2. We carefully design the architecture of ShapeFormer
to extract information rich feature representations of
the partial input using multiple Local Context Trans-
formers with increasing receptive fields at deeper layers,
and generate a complete shape - by predicting missing
regions from the overall shape vector, transfer infor-
mation from the encoded partial input to the decoder
using Skip Context Transformers, and associate points
based on part-wise similarity using Region Grouping
layers. By optimizing the standard Chamfer loss along
with newly introduced Routing, Part losses our method
learns to generate complete point clouds from partial
inputs.

3. We empirically demonstrate that ShapeFormer per-
forms on-par when compared to other methods in
the Completion3D benchmark and even out-performs
state-of-the-art methods in the Multi-View Partial Point
Cloud dataset by as much as 10% (relative). Owning to
the discrepancies in standard metrics like Chamfer Dis-
tance, and Earth-Mover’s Distance we briefly describe
a perceptual similarity based metric - which we term
Learned Point Cloud Distance.

4. We introduce a benchmark dataset - Completion3D-C
to evaluate robustness of methods on unseen synthetic
transforms, out-of-domain samples belonging to seen
and unseen categories and ShapeFormer improves per-
formance by as much as 14% (relative) when compared
to existing state-of-the-art.

2. Related Works
Advances in Transformers. Transformer [24] using self-
attention mechanism can effectively capture long-range cor-
relation and exchange information globally among the inputs.
It has demonstrated a remarkable performance in natural
language processing [8, 7, 3] and many cross-disciplinary
applications [13, 33, 37]. Recent advances have also suc-
cessfully extended Transformer to computer vision tasks. [9]
was the first work to employ a pure transformer architec-
ture (ViT) for image classification. The follow-up works
extend ViT to various classic vision tasks, such as object
detection [4, 39, 36, 22], and segmentation [6, 27], video
processing [38, 2]. More recently, transformers have shown
effectiveness in point cloud processing, specifically for the
tasks of classification [20, 35, 11], retrieval [20], and seg-
mentation [35].
Point Cloud Completion. Point Cloud completion aims
to generate a complete point cloud given an incomplete input.
One of the first works, PCN [34] first generates a coarse point
cloud, then up-sampled using folding operations. Follow-up
works like, TopNet [23] utilize a tree-structured decoder, SA-
Net [28] introduces connections between the encoder and
decoder to preserve the input structure, while PF-Net [12]
fuses multi-scale inputs and argues that predicting only miss-
ing regions can avoid geometric distortions. More recent
methods incorporate architectural changes [14, 26, 15, 31],
modify training schemes [32, 16] and constantly attempt to
improve performance.
Transformers Meet Point Cloud Completion. Follow-
ing the success of transformers in point cloud representation,
there exists few recent works which attempt to extend these
methods for point cloud completion. [30] models the gener-
ation of complete point clouds as the snowflake-like growth
of points in 3D space, while [25] capture both local, global
context using self and cross attention operations. These
few works indicate the feasibility of transformers to model
complex tasks in point cloud processing like point cloud
completion.

3. Method
Given a partial point cloud (P) with N points, our goal

is to predict the complete shape (C) of the same resolution.
To this end, we propose ShapeFormer which derives point-
wise representations to encode the shape information and
predicts the complete shape in a hierarchical manner. In
the following sections, we first introduce the preliminary of
attention and then provide an overview of PCT, followed by
network architecture details.

3.1. Preliminary: Attention

Attention was first proposed for NLP [24], where the goal
is to focus on a subset of important words. Consequently,
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Figure 1: Overview of ShapeFormer: 1) encode partial input using LCT, 2) transfer encoder representations to decoder using
SCT to guide generation process, 3) predict missing regions using FB, 4) refine predicted complete point cloud by grouping
points into semantically similar regions using RG

relations between inputs are highlighted that can be used to
capture context and higher-order dependencies. The atten-
tion matrix A(·) indicates a score between Nq Queries (Q)
and Nk Keys (K), which indicates the highly correlated part
that the input sequence needs to focus on.

A(Q,K) = softmax

(
Q ·KT

γ

)
(1)

where softmax(·) normalizes a matrix row-wise, and γ is
called a temperature factor. To capture the relations between
the input sequence, the Values V are weighted by the scores
from Eqn. 1. Therefore, we have

Attention(Q,K, V ) = A(Q,K) · V, (2)

The Transformer Attention, based on the Multi-Head Atten-
tion (MHA) operation is an extension of Eqn. 2. Rather than
computing the attention once, the MHA operation computes
it for H times (a.k.a. H-head attention). This helps the
transformer jointly attend to different information derived
from each head. The output from each of these heads are
concatenated before projecting onto a final output dimension,
followed by a residual connection with the input (Q) to the
transformer. The overall operation can be summarized as:

MHA = concatHi=1(Attentioni(Q,K, V ))

Transformer = Q+MLP(MHA)
(3)

3.2. Overview

As seen in Fig. 1, PCT takes a partial point cloud as input
and derives point-wise representations by deriving context

from its corresponding local neighbourhood. These point-
wise representations are then pooled to derive an overall
shape feature (F), then used to predict the complete shape in
multiple stages hierarchically with increasing resolution. In
each stage, we utilize three steps - (1) predict missing regions
using the overall shape vector, (2) guide the completion
process using skip connections to retain geometric details
of the input partial point cloud, (3) concurrently refine the
predicted missing and complete shapes by deriving region-
wise vectors. Our network pipeline consists of the following
stages:
Local Context Aggregation. Given an input partial point
cloud, we first encode point-wise features by deriving con-
text from the local neighbourhood of each point. This opera-
tion represented by the Local Context Transformer (LCT)
in Fig. 1, learns relationships between each point and its K
nearest neighbours. Similar to average pooling in standard
convolution networks, we apply Farthest Point Sampling
(FPS) by a factor d after each LCT block (except the last) to
resemble increasing receptive fields at deeper layers.
Coarse-to-Fine Point Cloud Prediction. The point-wise
representations derived from the final LCT block is mean-
pooled to derive a global vector which represents the overall
shape of the input partial point cloud. Inspired by [12], we
predict the complete point cloud in multiple stages hierarchi-
cally in a coarse-to-fine manner. We first pass the derived
shape vector through three MLP layers, each responsible
to predict point clouds in different resolutions. The point
cloud predicted in the top-most level act as center points to
the next, where we predict displacement vectors (∆x, ∆y,



∆z) to up-sample the complete shape to a higher resolution.
This repeats, until a complete point cloud of the desired res-
olution is obtained (N in this case) and the overall structure
is quite similar to a Feature Pyramid Network (FPN). The
initial coarse point cloud is obtained from the global shape
vector by passing it through an MLP layer, followed by a
reshaping operation. This is further refined using the Skip
Context Transformer (SCT), followed by an MLP layer
before passing onto the next level.
Skip Context Aggregation. To ensure that the generated
complete shape is coherent to the input partial point cloud,
we utilize skip connections between the encoder and decoder
at corresponding levels. This operation represented by Skip
Context Transformer (SCT) in Fig. 1, learns relationships
between the predicted complete shape and its closest similar
neighbourhood in the partial input point cloud. This helps
retain the local geometric details of the input partial shape
in the predicted complete point cloud.
Global Upsampling. In the lower levels, we use a Fold-
ing Block [34] (FB) seen in Fig. 1 which utilizes the pre-
dicted complete shape from the previous level, global shape
feature from the current level to derive displacement vectors.
This operation learns to predict the missing regions from the
global shape feature and up-sample the complete point cloud
simultaneously.
Region Context Aggregation. A point cloud is character-
ized by multiple groups of points, together representing the
complete shape. To effectively utilize these geometries and
to refine the predicted point cloud, we derive region-wise
features using the Region Grouping (RG) operation shown
in Fig. 1. This also helps associate the missing points with
the existing partial shape and induces more uniformity in the
predicted complete point clouds.

3.3. Network Architectures

The key component of transformers is the attention block
as we discussed in Sec. 3.1. Attention in its core is a set op-
erator which makes it ideal for sequence modality tasks and
hence we propose to use transformers as a key component in
our method.
3.3.1 Local Context Transformer

The attention operation described in Sec. 3.1, computes rela-
tionships between every element in the input sequence which
is computationally expensive in the context of point clouds
(since N is at least > 1000) and extracts global information
which is not necessarily useful for shape completion. The
Local Context Transformer (shown in Fig. 2a), encodes the
partial point cloud by aggregating information from each
point’s immediate neighbourhood. This is done by deriving
the Q vector from the point-wise features, while the K, V
vectors are derived from each point’s K nearest neighbours.
Unlike the standard dot product attention described in Eqn.
1, we compute the attention matrix using the subtraction

relationship between Q, K vectors which does not collapse
channel dimensions and enables it to be more expressive.
The normalized attention matrix is then multiplied with the
V vector and sum-pooled along the K axis to aggregate in-
formation from the neighbouring points. To encode spatial
information, we project the distances between each center
point and its neighbours to a higher dimension using an MLP
layer, which is then added to the A matrix and V vectors.
Each LCT block in Fig. 1 contains multiple attention lay-
ers, finally followed by a down-sampling operation (except
the last block). To avoid loss of information in the down-
sampling operation, we use FPS to derive the sampled point
cloud, compute its nearest neighbours with respect to the
previous resolution and aggregate the information using an
MLP followed by a max-pooling operation.
3.3.2 Skip Context Transformer

The Skip Context Transformer (shown in Fig. 2b), aggre-
gates partial input shape representation from the encoder
onto the predicted completed shape. To do so, we reuse
the attention operation described in Sec. 3.3.1 and mod-
ify the inputs to derive Q, K, V vectors. The Q vector is
derived using the features extracted from the predicted com-
plete shape, while the K, V vectors are derived from each
point’s K nearest neighbours in the encoder partial shape.
Since the predicted complete shape contains points that are
not present in the encoder, the representations from the en-
coder and decoder (at the same level) are concatenated, and
the FPS operation is performed to select a suitable set of
point-wise representations covering the entire shape. These
representations are used to derive the neighbourhood for
each point in the complete shape. Simply put, this operation
learns relationships between the predicted complete shape
and the partial input which provide geometric cues to guide
the completion process.
3.3.3 Folding Block

The Folding Block [34] (shown in Fig. 2c), globally up-
samples the predicted complete point cloud using the overall
shape representation and a base point cloud of lower reso-
lution. In our network architecture, we repeat the predicted
complete point cloud from the previous level to match the
required final resolution, and concatenate 2D grids sampled
from a 2D plane of fixed size. This representation is then
concatenated with the global shape feature from the current
level and transformed to displacement vectors using an MLP
layer. Considering the points from the previous resolution
as centers, we add these displacement vectors to generate an
up-sampled point cloud.
3.3.4 Region Grouping

The Region Grouping Block (shown in Fig. 2d), leverages
geometric cues present in various parts of the point cloud
to refine the predicted complete shape. Unlike fixed group-
ing strategies, we employ a learnable MLP layer to predict
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Figure 2: Detailed Network Architectures of various components in ShapeFormer.
probability values for each point which determine the best
group. The points are then hard-routed to these groups (i.e
a point can belong to only one group and no residue of it is
passed onto the others), followed by group-specific feature
transformation learned using an MLP layer. Therefore, this
operation helps associate various regions of the point cloud
(i.e points belonging to the partial input and missing regions)
based on their semantic similarity and further enhance them.
The outputs across groups are concatenated to obtain the
complete point-wise features which are transformed to 3D
coordinates using an MLP layer. It is essential that the model
explores all available groups before converging to the best
group for a point. Hence at times during training, the points
are routed to the group corresponding to their second-highest
probability. Further to ensure that all points are not routed to
a single group, we penalize the model based on the sum of
squares of fraction of points routed to each group. To pro-
vide an intuition, let us assume N1 and N2 be the fraction
of points routed to any two groups. If both these fraction of
points are routed to a single group, then the value of routing
loss will be higher as (N1 +N2)

2 ≥ N2
1 +N2

2 . While the
loss might favour equal number of points being routed to
each group, the model is still free to route any number of
points and that this penalty just avoids it from getting biased
to a selective number of groups.
3.4. Loss Functions

We train our network with an objective to minimize the
Chamfer Distance [10] between the predicted complete point
cloud and its corresponding ground truth at each resolution.
This ensures that the predicted shape is consistent with the
ground truth even at the least resolution and ensures that
the later modules can learn to incorporate better details and
refine the overall shape. However, Chamfer distance applied

globally only ensures consistency in the overall shape and
fails to penalize local geometric errors. Therefore, using the
masks obtained via the Region Grouping block, we segment
our regions from the predicted shape and the corresponding
ground truth and apply chamfer distance locally. This fur-
ther ensures that the model predicts fine details with greater
accuracy. Our total loss L can be calculated as:

L = λchamfer

3∑
i=1

Lchamfer(Ci, GTi)+

λpart

G∑
i=1

Lchamfer(Ci ·Mi, GTi ·Mi) + λreg

G∑
i=1

(Ni/N)2

(4)

where, Ci, GTi represents the predicted, ground truth com-
plete point clouds sampled at different resolutions, Mi, Ni

represent the mask, number of points routed to each group re-
spectively and corresponding weights for each loss indicated
by λ.

4. Experiments
We conduct several experiments to compare Shape Com-

pletion Transformer against several state-of-the-art (SOTA)
methods for shape completion. We first provide quantita-
tive, qualitative results on benchmark datasets, followed by
detailed robustness tests.

4.1. Implementation Details

We use the following hyper-parameters to train Point-
Former for the shape completion tasks across different ex-
periments. Our model consists of three LCT blocks in the
encoder and similarly three levels in the decoder, each de-
riving point-wise representations of feature sizes 64, 128,



Figure 3: Qualitative results on samples from the Completion3D dataset. ShapeFormer can predict detailed structures (back of
chair) and capture thin lines (lamp stand) more accurately than other methods.

256 respectively. Each transformer block - LCT, SCT con-
tains two attention layers each with four heads. We choose
d (down-sample factor) = 2, K (number of neighbours) =
64, G (number of groups) = 4. In the Folding blocks, we
sample grids with higher density as the resolution gets bigger
i.e at the later layers. We train the overall network for 100
epochs to minimize the loss, given in Eqn. 4 (with λchamfer =
1000, λpart = 100, λreg = 1) using the Adam optimizer with a
batch size of 32, initial learning rate 0.0001, which is cosine
decayed while training.

4.2. Results
Metrics. To measure the performance of our model we
use two widely adopted metrics: Chamfer Distance(CD) and
Earth-Mover’s Distance(EMD) [10]. We report the averages
of each metric across all point clouds for a given dataset.

Method CD (×10−4) ↓

PCN 18.22
TopNet 14.25
SA-Net 11.22
GRNet 10.64
PMP-Net 9.23
VRCNet 8.12
SnowflakeNet 7.60
PointAttn 6.63

ShapeFormer 10.09

Table 1: Results on the Completion3D test set.
Results on Completion3D Dataset. The Completion3D
dataset [23] contains 30,958 models belonging to 8 cate-
gories, where each point cloud contains 2,048 points. The
dataset is split into 28,974 train, 800 validation and 1,184
test point clouds and we follow the exact same splits to en-
sure fair comparison with other methods. Table. 1 presents
the CD on the test set obtained by submitting predictions to
the evaluation server and we can clearly see that our model
performs competitively when compared to SOTA methods.

Figure 4: Disparity in the CD and EMD metrics with its
correlation to visual quality.

As indicated by previous works [14], CD fails to penalize
density variations, presence of noise, absence of fine geomet-
ric details, etc. Infact upon manual inspection, we identify
several samples where ShapeFormer predicts complete point
clouds of greater visual quality even when compared to meth-
ods like VRCNet, SnowflakeNet which have an overall lower
chamfer distance (visualized in Fig. 3). EMD while being
computationally more expensive than CD, is more locally
discriminative and hence we compare the same on the Com-
pletion3D validation set (due to lack of access to GT point
clouds in the test set). Surprisingly, we find that the perfor-
mance of other baselines drop significantly on the validation
set when compared to the test set while ShapeFormer outper-
forms all methods by CD and performs as well as PointAttn
by EMD. Please note that we do not train the model on the
validation set just like other methods. We attribute this dif-
ference in performance to various tricks employed by other
baselines to achieve best performance on the test leaderboard
(Eg: training the model to predict scaled down versions of



the original point cloud as seen in SnowFlakeNet 1). While
most methods regard EMD as a better metric, we find several
discrepancies between CD, EMD and its correlation to visual
quality. For example, in Row-1 from Fig. 4, we can see that
while EMD of the second point cloud is better than the first,
it is relatively noisy and does not accurately construct the
engine components while the vice versa is true in Row-2.
To this end, we train a PointNet classifier on complete point
clouds from the Completion3D train set and compute the
L2-distance between the extracted features for the predicted,
GT complete point clouds using the trained classifier. We
term this metric Learned PointCloud Distance (LPS) and
a smaller value indicates a higher semantic similarity be-
tween two point clouds. Table. 2 discusses these results
and once again ShapeFormer outperforms most baselines
and performs competitively when compared to PointAttn. A
detailed analysis of the described metric does not fall within
the scope of this paper and hence we leave this for future
work.

Method CD (×10−4) ↓ EMD ↓ LPS (×10−4) ↓

PCN 17.34 101.1 0.068
TopNet 22.16 105.72 0.116
ECG 19.52 129.65 0.082
VRCNet 15.57 115.96 0.064
SnowflakeNet 19.39 100.43 0.072
PointAttn 14.69 96.19 0.052

ShapeFormer 12.77 98.57 0.063

Table 2: Results on the Comple-
tion3D validation set.

Method CD (×10−4) ↓

PCN 9.77
TopNet 10.11
MSN 7.90
CRN 7.25
ECG 6.64
VRCNet 5.96

ShapeFormer 5.38

Table 3: Results on
the MVP test set

Results on Multi-View Partial Point Cloud Dataset.
Due to the smaller size of Completion3D dataset, we uti-
lize the much larger Multi-View Partial Point Cloud (MVP)
dataset [16] which contains over 100,000 models belonging
to 16 categories. We choose the 2048 point resolution data
subset for all our experiments due to computational limi-
tations. Table. 3 discusses these results and ShapeFormer
clearly outperforms existing SOTA methods by as much as
10% (relative). Fig. 8 provides qualitative results on samples
from the MVP dataset and our method is able to produce
accurate reconstructions of various regions. These results fur-
ther indicate that our method showcases greater performance
improvements when trained on much larger data which is
consistent to similar observations in vision transformers [9].

Robustness results on Completion3D-C Benchmark.
The datasets discussed above contain point clouds which are
clean, noise-free and pose-normalized while in practice, one
would expect a model to perform well on point cloud data
that are transformed in several ways, unseen during train-
ing. To this end, we introduce a benchmark by extending
the Completion3D dataset, called Completion3D-C (C for
corrupted) and test various methods on their generalization

1similar discussions can be found here

capacity to unseen corruptions, domains and classes. As vi-
sualized in Fig. 5, the different corruptions in the benchmark
include:

• Noise: Add random noise sampled from a normal dis-
tribution to each point.

• Sparse: Randomly set ≈ 88% of the 2048 points of
each object to zero i.e., each object has only 256 valid
points in this set.

• Rotate: Apply a random rotation on an arbitrary axis
(z) to each object.

• Perturb: Rotate the object by a small magnitude along
any axis.

• Translation: Each object is translated by a displace-
ment vector sampled from a distribution.

• Out-Of-Domain: Identify samples belonging to the
same categories from out-of-domain MVP dataset
which are semantically farthest to the point clouds
present in Completion3D. Semantic closeness is de-
termined using extracted feature vector from a trained
PointNet classifier.

• Novel Category: Identify samples belonging to unseen
categories from MVP dataset (Eg: bed, bench, guitar,
bus, etc).

Please note that we also transform the corresponding ground
truths in the cases of Rotate, Translate, Perturb to ensure
consistency with the modified partial input. We train a model
only on the original dataset, and evaluate the same on the
above mentioned unseen transformations. Table. 4 presents
the CD between the predicted and ground truth complete
point clouds and ShapeFormer outperforms existing methods
by as much as 14% (relative). Specifically we see that our
method is robust to geometric transformations like rotate,
translate, perturb when compared to other methods. This
further justifies the usefulness of our approach for the task
of point cloud completion.

4.3. Discussion
Robustness to Real Point Cloud Scans. We further eval-
uate our method on real point cloud scans captured using
lidars. Specifically, we select common categories present
in the S3DIS [1] and benchmark MVP dataset (chair, ta-
ble, sofa) and segment out the incomplete, corrupt point
cloud instances from large-scenes. We then evaluate a model
trained on the MVP dataset on these unseen scans. Due
to absence of ground truth, we compare the accuracy of a
PointNet classifier trained only on clean instances from the
same categories before and after completion i.e an accurately
completed point cloud should be classified correctly. Table.
5 compares the accuracy of the classifier on the corrupt input
partial point clouds as-is, and completed point clouds using
VRCNet, and ShapeFormer. Interestingly, we see that the
accuracy of the classifier drops on the VRCNet-predicted
complete point clouds when compared to the original partial
input due to generation of noise and other artifacts while
ShapeFormer helps improve performance by 1%.

https://github.com/AllenXiangX/SnowflakeNet/issues/13


Figure 5: Samples from the Completion
3D-C benchmark.

Method Original Noise Sparse Rotate Perturb Translate Out-Of-Domain Novel Category Average (×10−4) ↓

PCN 17.34 19.34 28.64 52.93 21.7 43.85 10.76 14.52 26.13
TopNet 22.16 23.73 34.01 63.8 26.15 53.5 14.13 16.77 31.78
ECG 19.52 20.47 31.99 60.3 23.96 43.29 12.79 15.82 28.51
VRCNet 15.57 16.23 27.95 48.82 20.53 41.63 8.58 12.12 23.93
SnowflakeNet 19.39 24.93 30.67 38.93 20.53 33.81 7.06 8.74 23.12
PointAttn 14.69 16.64 25.77 47.7 17.58 36.31 6.59 8.35 21.70

ShapeFormer 12.77 23.09 28.2 28.2 14.06 23.99 8.57 11.31 18.77

Table 4: Results on the Completion3D-C benchmark for various unseen transforma-
tions.

Method Accuracy (in %)

Input partial 9.87
VRCNet complete 8.91
ShapeFormer complete 10.01

Table 5: Point Cloud Classification accuracy on recon-
structed point clouds from OOD Dataset.

Figure 6: Visualization of learned attention maps in the
encoder and decoder.

Visualizing Attention Maps. The learned attention maps
compute relationships between the every point and its im-
mediate neighbourhood. We visualize these attention maps
by computing the most important point within this local
neighbourhood and assign importance values based on the
attention score. By adding these individual importance val-
ues for each point in the entire point cloud, we derive an
average attention map describing the regions to which the
model pays attention to. Fig. 6 visualizes the average at-
tention across the entire point cloud and at different levels.
We can see that the encoder initially pays uniform attention
throughout the entire partial point cloud (higher near the in-
complete regions) and more specific parts in the later layers.
Similarly, the decoder pays attention to points throughout
the shape at the lower resolution and once the predicted com-
plete point cloud has sufficient details incorporated from the
partial shape, it focuses more on the missing regions (last
layer).

Visualizing Grouped Regions. In Fig. 7, we visualize
the groups assigned to each point in the point cloud during
the Region Grouping operation (where each color denotes

Figure 7: Figure represents the colour-coded groups created
by ShapeFormer.

a seperate group). Our model learns to group points into
semantically similar regions, Eg: gun handle, gun barrel,
airplane body, airplane wings, etc. Interestingly in the case
of the airplane, our model routes symmetrically opposite
but part-wise similar points to the same group. Therefore,
beyond spatial similarity our model learns to group points
based on geometric cues.
5. Conclusion

We propose a pure-transformer based approach for point
cloud completion - ShapeFormer which efficiently generates
complete point clouds by encoding neighbourhood contex-
tual information, and guides the decoding process using skip
connections. By learning to group points into semantically
similar regions, our method is able to refine the predicted
complete point clouds and further optimize chamfer distance
at a part level. Our model predicts complete point clouds
with fine geometric details, smooth distributions and even
outperforms existing state-of-the-art methods in benchmark
datasets. We highlight several disparities in existing eval-
uation metrics and briefly describe a perceptual similarity
based metric - Learned PointCloud Distance. Further, we
introduce a new robustness benchmark for point cloud com-
pletion - Completion3D-C to evaluate methods on unseen
synthetic and domain transforms. Our model successfully
generalizes to out-of-domain data belonging to seen and
unseen categories.
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A. Appendix

Figure 8: Qualitative results on samples from the MVP
dataset. ShapeFormer predicts complete point clouds with
higher uniformity and detail.


